Genome-wide analysis and functional identification of the annexin gene family in maize (Zea mays L.)
نویسندگان
چکیده
Annexins have previously been identified and characterized in Arabidopsis and rice. They compose a multigene family in plants. In this study, we indicated the isolation and characterization of maize annexin genes across a whole genome using bioinformatics, microarray and real-time PCR methods. A total of 12 members of this family were identified in the maize genome. The 12 maize annexins were distributed on eight maize chromosomes. Multiple alignment and motif display results revealed that most maize annexin proteins contained 1–4 annexin repeats. A phylogenetic analysis indicated the maize annexin gene family could be divided into four subfamilies. In brief, putative cis-elements involved in abiotic stress response, phytohormones, pollen-specific elements and seed development were observed in the promoters of maize annexin genes. Microarray data showed that the maize annexin genes had tissue-specific expression patterns in the maize developmental steps. The QRT-PCR analysis result indicated that all 12 genes were induced in the seedling leaves by PEG and NaCl.
منابع مشابه
Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملAgrobacterium Mediated Transformation of Maize (Zea mays L.)
Agrobacterium tumefaciens mediated transformation may offer a better alternative than the biolistic gun for genetic transformation of maize plants. This gene delivery system results in a greater proportion of stable, low-copy number transgenic events than does the biolistic gun, and is highly efficient. In the present work, we studied maize transformation using A. tumefaciens by identifying som...
متن کاملGenome-Wide Identification, Characterization and Expression Analysis of the Chalcone Synthase Family in Maize
Members of the chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. The metabolites play important roles in protecting land plants against various environmental stresses during the evolutionary process. Our research was conducted on comprehensive investigation of CHS genes in maize (Zea mays L.), including their phylogen...
متن کاملThe R2R3-MYB Transcription Factor Gene Family in Maize
MYB proteins comprise a large family of plant transcription factors, members of which perform a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, we performed a comprehensive computational analysis, to yield a complete overview of the R2R3-MYB gene family in maize, includ...
متن کاملBioinformatic and empirical analysis of a gene encoding serine/threonine protein kinase regulated in response to chemical and biological fertilizers in two maize (Zea mays L.) cultivars
Molecular structure of a gene, ZmSTPK1, encoding a serine/threonine protein kinase in maize was analyzed by bioinformatic tool and its expression pattern was studied under chemical biological fertilizers. Bioinformatic analysis cleared that ZmSTPK1 is located on chromosome 10, from position 141015332 to 141017582. The full genomic sequence of the gene is 2251 bp in length and includes 2 exons. ...
متن کامل